Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Onco Targets Ther ; 13: 11031-11044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154652

RESUMO

PURPOSE: Apatinib is an inhibitor of VEGFR2 (vascular endothelial growth factor receptor 2) that has attracted a great deal of attention due to its promotion of anticancer activity. In the present study, we investigated the therapeutic effects of apatinib against colorectal cancer (CRC) and examined the underlying mechanism. MATERIALS AND METHODS: Both in vivo and in vitro assays were conducted to study the effect of apatinib on CRC. To elucidate the associated mechanism, RNA-seq (transcriptome) analysis was conducted on apatinib-treated HCT116 cells. RESULTS: Apatinib showed antiproliferative and proapoptotic effects, induced G0/G1 arrest and blocked cell migration and invasion in CRC. An analysis of the mechanism associated with apatinib activity demonstrated that by interacting with VEGFR2, apatinib decreased p-Src, p-Akt, and p-GSK3ß levels, which further increased ß-catenin ubiquitination and reduced the nuclear translocation of ß-catenin. Furthermore, apatinib strongly suppressed CT26 cell growth in mouse xenograft models by inhibiting ß-catenin signaling and angiogenesis. CONCLUSION: Overall, the results of the present study here indicated that by inhibiting the VEGFR2-ß-catenin-mediated malignant phenotype, apatinib significantly suppresses the growth of CRC, suggesting that the use of apatinib is a promising therapeutic strategy for CRC.

3.
Diabetes Metab Syndr Obes ; 13: 1435-1447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431527

RESUMO

BACKGROUND: The Goto-Kakizaki (GK) rat, developed from repeated inbreeding of glucose-intolerant Wistar rats, has been widely used to explore the development of spontaneous type-2 diabetes mellitus (T2DM). However, the gastric microbiota of GK and Wistar rats are still unclear. This study aimed to understand the gastric microbiota characteristics of GK rats by comparing it with non-diabetic Wistar rats. MATERIALS AND METHODS: Male Wistar rats and GK rats were housed in specific pathogen-free (SPF) environment for 12 weeks with free access to sterilized food and water. Body weight and random blood glucose (BG) levels were determined. At the end of the experiment, the gastric contents of the rats were collected for the identification of gastric microbiota using 16S rRNA gene sequencing. RESULTS: The richness of gastric microbiota in GK rats was similar to that of Wistar rats (P > 0.05). The results of Shannon, Simpson, beta diversity indices, and ANOSIM analysis showed that alpha and beta diversity of gastric microbiota in GK rats were significantly lower than that of Wistar rats (P < 0.01). Firmicutes (96.0%), Proteobacteria (1.9%) and Cyanobacteria (0.8%) were the dominant gastric microbiota in GK rats accounting for 72.9%, 14.7% and 10.9%, respectively. Linear discriminant analysis effect size (LEfSe) revealed that phylum Firmicutes and four genera (Anaerovibrio, Collinsella, Prevotellaceae_UCG_001, and Lactobacillus) were significantly abundant in the stomachs of GK rats. In contrast, seven genera (unidentified_Chloroplast, Porphyromonas, Neisseria, Rubrobacter, Veillonella, Lachnospiraceae_UCG_005, and unidentified_Erysipelotrichaceae) were significantly abundant in the stomachs of Wistar rats. Blood glucose was positively correlated with Anaerobibrio and Lactobacillus, and negatively correlated with four genera (Porphyromonas, Rubrobacter, Lachnospiraceae_UCG_005, and unidentified_Erysipelotrichaceae). In addition, chemoheterotrophy and fermentation were the most important functions of gastric microbiota. CONCLUSION: The gastric microbiota of GK rats with spontaneous T2DM showed the typical characteristics of low diversity and significant enrichment of Firmicutes phylum and four genera (Anaerovibrio, Collinsella, Prevotellaceae_UCG_001, and Lactobacillus) compared with gastric microbiota of Wistar rats.

4.
Hereditas ; 156: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31285741

RESUMO

BACKGROUND: Breast cancer is one of the most common endocrine cancers among females worldwide. Distant metastasis of breast cancer is causing an increasing number of breast cancer-related deaths. However, the potential mechanisms of metastasis and candidate biomarkers remain to be further explored. RESULTS: The gene expression profiles of GSE102484 were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to screen for the most potent gene modules associated with the metastatic risk of breast cancer, and a total of 12 modules were identified based on the analysis. In the most significant module (R2 = 0.68), 21 network hub genes (MM > 0.90) were retained for further analyses. Next, protein-protein interaction (PPI) networks were used to further explore the biomarkers with the most interactions in gene modules. According to the PPI networks, five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) were identified as key genes associated with breast cancer progression. Furthermore, the prognostic value and differential expression of these genes were validated based on data from The Cancer Genome Atlas (TCGA) and Kaplan-Meier (KM) Plotter. Receiver operating characteristic (ROC) curve analysis revealed that the mRNA expression levels of these five hub genes showed excellent diagnostic value for breast cancer and adjacent tissues. Moreover, these five hub genes were significantly associated with worse distant metastasis-free survival (DMFS) in the patient cohort based on KM Plotter. CONCLUSION: Five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) associated with the risk of distant metastasis were extracted for further research, which might be used as biomarkers to predict distant metastasis of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Biologia Computacional/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Curva ROC , Reprodutibilidade dos Testes
5.
Pathol Res Pract ; 215(7): 152452, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104928

RESUMO

Ovarian cancer (OvCa) has the highest morbidity among all gynecologic cancers worldwide, and its distant metastasis is one of main causes for the poor prognosis of OvCa patients. Our previous studies have reported that DAAM1-involved signaling pathways play vital roles in metastasis of breast cancer. However, whether DAAM1 participates in OvCa migration and/or invasion is still unknown. The impact of DAAM1 on cell migration and invasion in OvCa was evaluated by wound healing assay and Boyden chamber assay. The specific miRNA targeting DAAM1 was predicted by bioinformatics methods and verified by dual-luciferase activity assay. The miR-208a-5p expression levels in OvCa tissues and the impacts of miR-208a-5p on cell migration and invasion were also assessed, respectively. High expression of DAAM1 was associated with distant metastasis in OvCa. Silence of DAAM1 by siRNA blocked the migration and invasion of OVCAR-3 cells. MiR-208a-5p directly targeted DAAM1 and was shown a decreased expression in metastatic OvCa tissues. Elevated expression of miR-208a-5p inhibited the migration and invasion of OVCAR-3 cell which can be rescued by DAAM1 overexpression. Our data suggest that miR-208-5p/DAAM1 axis participates in OvCa migration and invasion and may be a novel clinical target to limit OvCa metastasis.


Assuntos
Movimento Celular/fisiologia , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Cicatrização/fisiologia , Proteínas rho de Ligação ao GTP/genética
6.
Cancer Cell Int ; 19: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911286

RESUMO

BACKGROUND: Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a member of microfilament-related formins and mediates cell motility in breast cancer (BrCa). However, the genetic mutation status of DAAM1 mRNA and its correlation with pathological characteristics are still unclearly. Methods: A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3'-UTR and underlying mechanism in BrCa metastasis. METHODS: A patient cohort and BrCa cells were recruited to demonstrate the role of functional SNP in microRNA-208a-5p binding site of DAAM1 3'-UTR and underlying mechanism in BrCa metastasis. RESULTS: The expression and activation of DAAM1 increased markedly in lymphnode metastatic tissues. A genetic variant (rs79036859 A/G) was validated in the miR-208a-5p binding site of DAAM1 3'-UTR. The G genotype (AG/GG) was a risk genotype for the metastasis of BrCa by reducing binding affinity of miR-208a-5p for the DAAM1 3'-UTR. Furthermore, the miR-208a-5p expression level was significantly suppressed in lymphnode metastatic tissues compared with that in non-lymphnode metastatic tissues. Overexpression of miR-208a-5p inhibited DAAM1/RhoA signaling pathway, thereby leading to the decrease of the migratory ability. CONCLUSION: Overall, the rs79036859 G variant of DAAM1 3'-UTR was identified as a relevant role in BrCa metastasis via the diversity of miR-208a-5p binding affinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...